
Diagnosticando e Reparando Banco de Dados

Corrompidos
Atualizada e revisada em 29 Setembro 2000 por Paul Beach
Tradução/adaptação : Carlos H. Cantu (www.interbase-br.com
<http://www.interbase-br.com>)
Um número grande de tipos de corrupções podem ser reparadas através dos
utilitários gfix e gbak. No entanto, é possível que em alguns casos raros o arquivo
de banco de dados esteja corrompido de tal maneira que seja impossível para
esses utilitários restaura-lo. Nesses casos, medidas mais drásticas podem ser
necessárias para colocar o BD on-line novamente. Se voce não conseguir
recuperar seu BD, entre em contato conosco e nós veremos o que poderemos
fazer para ajudar.
A causa mais freqüente de corrupção é a queda de energia no servidor de banco
de dados. Cortar a energia quando uma aplicação está em processo de gravação
no Banco de Dados pode resultar que dados incompletos ou corrompidos sejam
gravados no arquivo de Banco de Dados. Em todos os casos, o usuário e o
administrador de sistema deve tomar todos os cuidados necessários para que isso
não aconteça.
O InterBase tem dois modos de escrita (escrita forçada), síncrono e assíncrono.
Nas versões anteriores do IB, o modo de escrita padrão era síncrona.
gfix -write sync database.gdb
No IB 6.0, a escrita padrão é assíncrona :
gfix -write async database.gdb
A escrita síncrona também é conhecida como "escrita cuidadosa" e nela o
Interbase irá gravar as páginas alteradas assim que a transação for commitada, e
retorna-las ao BD na ordem correta (em se tratando do servidor). Esse tipo de
escrita funciona bem em ambientes Linux ou Unix, mas causam alguns problemas
no Windows e no NT. Esses sistemas ignoram as instruções de escrita do
Interbase e, mesmo as páginas tendo sido commitadas e gravadas, elas somente
serão realmente gravadas quando o sistema operacional achar que é melhor faze-
lo, mesmo com a opção de escrita-forçada ligada. Portanto, apesar da corrupção
de arquivos ser rara, o Windows é o sistema mais suscetível à uma possível
corrupção.
Geralmente a maioria dos usuários deixam a opção de escrita-forçada desligada
devido ao ganho de performance que se pode obter deixando que o Sistema
Operacional gerencie seu cache de dados automaticamente. Se voce está usando
escrita assíncrona, tome muito cuidado com sua estratégia de backup, no caso do
pior acontecer.
Nas versões anteriores do IB 6.0, o aplicativo Server Manager oferecia alguns
recursos de validação de um BD, assim como o atual IBConsole, no entanto, eu
recomendo o uso do utilitário GFIX para essa função devido ao seu maior número
de opções e flexibilidade.
A corrupção de um BD que pode ser reparada geralmente poderá ser recuperada
usando o gfix ou uma combinação do gfix e do gbak.
1. Defina as seguints variáveis para tornar o processo mais fácil pois voce não
terá que digitar toda hora o usuário e a senha.

SET ISC_USER=SYSDBA
SET ISC_PASSWORD=masterkey
2. Sempre tenha certeza de estar trabalhando com uma cópia do BD e não o
arquivo original. Use o sistema operacional para fazer uma cópia do arquivo. Voce
deve ter acesso exclusivo ao BD para fazer isso.
copy employee.gdb database.gdb
3.Agora confira se o BD está corrompido. Voce precisa ter acesso exclusivo ao
BD para fazer isso, mas como voce está trabalhando com uma cópia do BD
original, isso não é problema.
gfix -v -full database.gdb
4. Se o comando anterior indicou que há um problema com o BD, agora nós
devemos repara-lo.
gfix -mend -full -ignore database.gdb
5.O próximo passo é conferir se o BD foi reparado.
gfix -v -full database.gdb
6. Se o BD continua com erros, voce deve fazer um backup completo e restaura-
lo. No seu estilo mais simples, a linha de comando do backup pode ser :
gbak -backup -v -ignore database.gdb database.gbk
7. No entanto, se o gbak falhar porque está tendo problemas com garbage
collection, então use o seguinte comando :
gbak -backup -v -ignore -garbage database.gdb database.gbk
8. Se houver corrupção nas versões dos registros de uma transação em limbo,
então voce deve incluir a opção -limbo :
gbak -backup -v -ignore -garbage -limbo database.gdb database.gbk
9. Agora crie um novo BD do backup:
gbak -create -v atlas.gbk atlas_new.gdb
10. Se houver problemas durante o restore, considere usar as seguintes opções.
-inactive, se houver problemas de índices, isso irá restaurar o BD mas não irá
ativar nenhum índice, depois voce poderá ativar os índices manualmente um de
cada vez.
-one_at_a_time, isso irá restaurar o BD uma tabela por vez, e commitar as tabelas
restauradas, se houver um problema maior pelo menos voce terá uma parte dos
dados.
Se tudo isso não funcionar, mas voce ainda puder acessar o banco de dados
corrompido, considere usar o QLI para mover os dados e estruturas das tabelas
do BD danificado para um novo.
1. Crie um banco de dados em branco.
2. Edite o seguinte (get_tables.sql) para apontar para o BD corrompido.
connect database.gdb
user 'sysdba' password 'masterkey;
select 'define relation tgt.',
rdb$relation_name, ' based on relation src.', rdb$relation_name, ';'
from rdb$relations
where rdb$relation_name not starting with 'RDB$';
commit;

select 'tgt.', rdb$relation_name,
' = src.', rdb$relation_name, ';'
from rdb$relations
where rdb$relation_name not starting with 'RDB$';
3. Edite o arquivo resultante para que ele se pareça com isso :
ready old.gdb as src;
ready new.gdb as tgt;
define relation tgt.COUNTRY based on relation src.COUNTRY;
define relation tgt.JOB based on relation src.JOB;
define relation tgt.DEPARTMENT based on relation src.DEPARTMENT;
define relation tgt.EMPLOYEE based on relation src.EMPLOYEE;
define relation tgt.PROJECT based on relation src.PROJECT;
define relation tgt.PHONE_LIST based on relation src.PHONE_LIST;
define relation tgt.EMPLOYEE_PROJECT based on relation
src.EMPLOYEE_PROJECT;
define relation tgt.CUSTOMER based on relation src.CUSTOMER;
define relation tgt.SALES based on relation src.SALES;
define relation tgt.PROJ_DEPT_BUDGET based on relation
src.PROJ_DEPT_BUDGET;
define relation tgt.SALARY_HISTORY based on relation src.SALARY_HISTORY;
tgt.COUNTRY = src.COUNTRY;
tgt.JOB = src.JOB;
tgt.DEPARTMENT = src.DEPARTMENT;
tgt.EMPLOYEE = src.EMPLOYEE;
tgt.PROJECT = src.PROJECT;
tgt.PHONE_LIST = src.PHONE_LIST;
tgt.EMPLOYEE_PROJECT = src.EMPLOYEE_PROJECT;
tgt.CUSTOMER = src.CUSTOMER;
tgt.SALES = src.SALES;
tgt.PROJ_DEPT_BUDGET = src.PROJ_DEPT_BUDGET;
tgt.SALARY_HISTORY = src.SALARY_HISTORY;
4. Agora instale a versão apropriada do QLI no diretório interbase\bin e rode o
script QLI invocando o QLI e rodando o script move.sql.
QLI>@move.sql
Para ajudar voce à entender o que exatamenteo gfix está fazendo, aqui está um
pedaço do código fonte, que explica em detalhes o que está acontecendo.
/*
 * PROGRAM: JRD Access Method
 * MODULE: val.c
 * DESCRIPTION: Validation and garbage collection
 *
 * copyright (c) 1985, 1997 by Borland International
 * copyright (c) 1999 by Inprise Corporation
 */

#ifdef INTERNAL_DOCUMENTATION
Database Validation and Repair
==============================

Deej Bredenberg March 16, 1994

Updated: 1996-Dec-11 David Schnepper

I. TERMINOLOGY

The following terminology will be helpful to understand in
this discussion:

record fragment:The smallest recognizable piece of a record;
multiple fragments can be linked together to form a single
version.
record version: A single version of a record representing an
INSERT, UPDATE or DELETE by a particular transaction (note
that deletion of a record causes a new version to be stored as a
deleted stub).
record chain: A linked list of record versions chained together
to represent a single logical "record".
slot: The line number of the record on page.
A variable-length array on each data page stores the offsets
to the stored records on that page, and the slot is an index
into that array.

II. COMMAND OPTIONS

Here are all the options for gfix which have to do with
validation, and what they do:

gfix switch dpb parameter
----------- -------------

-validate isc_dpb_verify (gds__dpb_verify prior to 4.0)

Invoke validation and repair. All other switches modify this
switch.

-full isc_dpb_records

Visit all records. Without this switch, only page structures
will be validated, which does involve some limited checking of
records.

-mend isc_dpb_repair

Attempts to mend the database where it can to make it viable
for reading; does not guarantee to retain data.

-no_update isc_dpb_no_update

Specifies that orphan pages not be released, and allocated
pages not be marked in use when found to be free. Actually
a misleading switch name since -mend will update the database,
but if -mend is not specified and -no_update is specified,
then no updates will occur to the database.

-ignore isc_dpb_ignore

Tells the engine to ignore checksums in fetching pages.
Validate will report on the checksums, however. Should
probably not even be a switch, it should just always be in
effect. Otherwise checksums will disrupt the validation.
Customers should be advised to always use it.
NOTE: Unix 4.0 (ODS 8.0) does not have on-page checksums,

and all platforms under ODS 9.0 do not have checksums.

III. OPERATION

Validation runs only with exclusive access to the database,
to ensure that database structures are not modified during
validation. On attach, validate attempts to obtain an exclusive
lock on the database.

If other attachments are already made locally or through the
same multi- client server, validate gives up with the message:

"Lock timeout during wait transaction
-- Object "database_filename.gdb" is in use"

If other processes or servers are attached to the database,
validate waits for the exclusive lock on the database
(i.e. waits for every other server to get out of the database).

NOTE: Ordinarily when processes gain exclusive access to
the database, all active transactions are marked as dead
on the Transaction Inventory Pages. This feature is turned
off for validation.

IV. PHASES OF VALIDATION

There are two phases to the validation, the first of which
is a walk through the entire database (described below).
During this phase, all pages visited are stored in a bitmap for
later use during the garbage collection phase.

A. Visiting Pages

During the walk-through phase, any page that is fetched
goes through a basic validation:

1. Page Type Check

Each page is check against its expected type. If the wrong type
page is found in the page header, the message:

"Page xxx wrong type (expected xxx encountered xxx)"

is returned. This could represent a) a problem with the database
being overwritten, b) a bug with InterBase page allocation mechanisms
in which one page was written over another, or c) a page which was
allocated but never written to disk (most likely if the encountered
page type was 0).

The error does not tell you what page types are what, so here
they are for reference:

#define pag_undefined 0 /* purposely undefined */
#define pag_header 1 /* Database header page */
#define pag_pages 2 /* Page inventory page */
#define pag_transactions 3 /* Transaction inventory page */
#define pag_pointer 4 /* Pointer page */
#define pag_data 5 /* Data page */
#define pag_root 6 /* Index root page */
#define pag_index 7 /* Index (B-tree) page */
#define pag_blob 8 /* Blob data page */

#define pag_ids 9 /* Gen-ids */
#define pag_log 10 /* Write ahead log page: 4.0 only */

2. Checksum

If -ignore is specified, the checksum is specifically checked in
validate instead of in the engine. If the checksum is found to
be wrong, the error:

"Checksum error on page xxx"

is returned. This is harmless when found by validate, and the page
will still continue to be validated - if data structures can be
validated on page, they will be. If -mend is specified, the page
will be marked for write, so that when the page is written to disk
at the end of validation the checksum will automatically be
recalculated.

Note: For 4.0 only Windows & NLM platforms keep page checksums.

3. Revisit

We check each page fetched against the page bitmap to make sure we
have not visited already. If we have, the error:

"Page xxx doubly allocated"

is returned. This should catch the case when a page of the same type
is allocated for two different purposes.

Data pages are not checked with the Revisit mechanism - when walking
record chains and fragments they are frequently revisited.

B. Garbage Collection

During this phase, the Page Inventory (PIP) pages are checked against the
bitmap of pages visited. Two types of errors can be detected during
this phase.

1. Orphan Pages

If any pages in the page inventory were not visited
during validation, the following error will be returned:

"Page xxx is an orphan"

If -no_update was not specified, the page will be marked as free
on the PIP.

2. Improperly Freed Pages

If any pages marked free in the page inventory were in fact
found to be in use during validation, the following error
will be returned:

"Page xxx is use but marked free" (sic)

If -no_update was not specified, the page will be marked in use
on the PIP.

NOTE: If errors were found during the validation phase, no changes will

be made to the PIP pages. This assumes that we did not have a chance to
visit all the pages because invalid structures were detected.

V. WALK-THROUGH PHASE

A. Page Fetching

In order to ensure that all pages are fetched during validation, the
following pages are fetched just for the most basic validation:

1. The header page (and for 4.0 any overflow header pages).
2. Log pages for after-image journalling (4.0 only).
3. Page Inventory pages.
4. Transaction Inventory pages

If the system relation RDB$PAGES could not be read or did not
contain any TIP pages, the message:

"Transaction inventory pages lost"

will be returned. If a particular page is missing from the
sequence as established by RDB$PAGE_SEQUENCE, then the following
message will be returned:

"Transaction inventory page lost, sequence xxx"

If -mend is specified, then a new TIP will be allocated on disk and
stored in RDB$PAGES in the proper sequence. All transactions which
would have been on that page are assumed committed.

If a TIP page does not point to the next one in sequence, the
following message will be returned:

"Transaction inventory pages confused, sequence xxx"

5. Generator pages as identified in RDB$PAGES.

B. Relation Walking

All the relations in the database are walked. For each relation, all
indices defined on the relation are fetched, and all pointer and
data pages associated with the relation are fetched (see below).

But first, the metadata is scanned from RDB$RELATIONS to fetch the
format of the relation. If this information is missing or
corrupted the relation cannot be walked.
If any bugchecks are encountered from the scan, the following
message is returned:

"bugcheck during scan of table xxx (<table_name>)"

This will prevent any further validation of the relation.

NOTE: For views, the metadata is scanned but nothing further is done.

C. Index Walking

Prior to 5.0 Indices were walked before data pages.
In 5.0 Index walking was moved to after data page walking.
Please refer to the later section entitled "Index Walking".

D. Pointer Pages

All the pointer pages for the relation are walked. As they are walked
all child data pages are walked (see below). If a pointer page cannot
be found, the following message is returned:

"Pointer page (sequence xxx) lost"

If the pointer page is not part of the relation we expected or
if it is not marked as being in the proper sequence, the following
message is returned:

"Pointer page xxx is inconsistent"

If each pointer page does not point to the next pointer page as
stored in the RDB$PAGE_SEQUENCE field in RDB$PAGES, the following
error is returned:

"Pointer page (sequence xxx) inconsistent"

E. Data Pages

Each of the data pages referenced by the pointer page is fetched.
If any are found to be corrupt at the page level, and -mend is
specified, the page is deleted from its pointer page. This will
cause a whole page of data to be lost.

The data page is corrupt at the page level if it is not marked as
part of the current relation, or if it is not marked as being in
the proper sequence. If either of these conditions occurs, the
following error is returned:

"Data page xxx (sequence xxx) is confused"

F. Slot Validation

Each of the slots on the data page is looked at, up to the count
of records stored on page. If the slot is non-zero, the record
fragment at the specified offset is retrieved. If the record
begins before the end of the slots array, or continues off the
end of the page, the following error is returned:

"Data page xxx (sequence xxx), line xxx is bad"

where "line" means the slot number.

NOTE: If this condition is encountered, the data page is considered
corrupt at the page level (and thus will be removed from its
pointer page if -mend is specified).

G. Record Validation

The record at each slot is looked at for basic validation, regardless
of whether -full is specified or not. The fragment could be any of the
following:

1. Back Version

If the fragment is marked as a back version, then it is skipped.
It will be fetched as part of its record.

2. Corrupt

If the fragment is determined to be corrupt for any reason, and -mend
is specified, then the record header is marked as damaged.

3. Damaged

If the fragment is marked damaged already from a previous visit or
a previous validation, the following error is returned:

"Record xxx is marked as damaged"

where xxx is the record number.

4. Bad Transaction

If the record is marked with a transaction id greater than the last
transaction started in the database, the following error is returned:

"Record xxx has bad transaction xxx"

H. Record Walking

If -full is specified, and the fragment is the first fragment in a
logical
record, then the record at this slot number is fully retrieved. This
involves retrieving all versions, and all fragments of each
particular version. In other words, the entire logical record will
be retrieved.

1. Back Versions

If there are any back versions, they are visited at this point.
If the back version is on another page, the page is fetched but
not validated since it will be walked separately.

If the slot number of the back version is greater than the max
records on page, or there is no record stored at that slot number,
or it is a blob record, or it is a record fragment, or the
fragment itself is invalid, the following error
message is returned:

"Chain for record xxx is broken"

2. Incomplete

If the record header is marked as incomplete, it means that there
are additional fragments to be fetched--the record was too large
to be stored in one slot.
A pointer is stored in the record to the next fragment in the list.

For fragmented records, all fragments are fetched to form a full
record version. If any of the fragments is not in a valid position,
or is not the correct length, the following error is returned:

"Fragmented record xxx is corrupt"

Once the full record has been retrieved, the length of the format is
checked against the expected format stored in RDB$FORMATS (the
format number is stored with the record, representing the exact
format of the relation at the time the record was stored.)

If the length of the reconstructed record does not match
the expected format length, the following error is returned:

"Record xxx is wrong length"

For delta records (record versions which represent updates to the record)
this check is not made.

I. Blob Walking

If the slot on the data page points to a blob record, then the blob
is fetched (even without -full). This has several cases, corresponding
to the various blob levels.

Level Action
----- ---
0 These are just records on page, and no further validation is done.
1 All the pages pointed to by the blob record are fetched and
 validated in sequence.
2 All pages pointed to by the blob pointer pages are fetched and
 validated.
3 The blob page is itself a blob pointer page; all its children
 are fetched and validated.

For each blob page found, some further validation is done. If the
page does not point back to the lead page, the following error
is returned:

"Warning: blob xxx appears inconsistent"

where xxx corresponds to the blob record number. If any of the blob
pages
are not marked in the sequence we expect them to be in, the following
error is returned:

"Blob xxx is corrupt"

Tip: the message for the same error in level 2 or 3 blobs is slightly
different:

"Blob xxx corrupt"

If we have lost any of the blob pages in the sequence, the following
error
is returned:

"Blob xxx is truncated"

If the fetched blob is determined to be corrupt for any of the above
reasons, and -mend is specified, then the blob record is marked as
damaged.

J. Index Walking

In 5.0 Index walking was moved to after the completion
of data page walking.

The indices for the relation are walked. If the index root page
is missing, the following message is returned:

"Missing index root page"

and the indices are not walked. Otherwise the index root page
is fetched and all indices on the page fetched.

For each index, the btree pages are fetched from top-down, left to
right.
Basic validation is made on non-leaf pages to ensure that each node
on page points to another index page. If -full validation is specified
then the lower level page is fetched to ensure it is starting index
entry is consistent with the parent entry.
On leaf pages, the records pointed to by the index pages are not
fetched, the keys are looked at to ensure they are in correct
ascending order.

If a visited page is not part of the specified relation and index,
the following error is returned:

"Index xxx is corrupt at page xxx"

If there are orphan child pages, i.e. a child page does not have its
entry
as yet in the parent page, however the child's left sibling page has it's
btr_sibling updated, the following error is returned

"Index xxx has orphan child page at page xxx"

If the page does not contain the number of nodes we would have
expected from its marked length, the following error is returned:

"Index xxx is corrupt on page xxx"

While we are walking leaf pages, we keep a bitmap of all record
numbers seen in the index. At the conclusion of the index walk
we compare this bitmap to the bitmap of all records in the
relation (calculated during data page/Record Validation phase).
If the bitmaps are not equal then we have a corrupt index
and the following error is reported:

"Index %d is corrupt (missing entries)"

We do NOT check that each version of each record has a valid
index entry - nor do we check that the stored key for each item
in the index corresponds to a version of the specified record.

K. Relation Checking

We count the number of backversions seen while walking pointer pages,
and separately count the number of backversions seen while walking
record chains. If these numbers do not match it indicates either
"orphan" backversion chains or double-linked chains. If this is
see the following error is returned:

"Relation has %ld orphan backversions (%ld in use)"

Currently we do not try to correct this condition, mearly report
it. For "orphan" backversions the space can be reclaimed by
a backup/restore. For double-linked chains a SWEEP should
remove all the backversions.

VI. ADDITIONAL NOTES

A. Damaged Records

If any corruption of a record fragment is seen during validation, the
record header is marked as "damaged". As far as I can see, this has no
effect on the engine per se. Records marked as damaged will still be
retrieved by the engine itself. There is some question in my mind as
to whether this record should be retrieved at all during a gbak.

If a damaged record is visited, the following error message will appear:

"Record xxx is marked as damaged"

Note that when a damaged record is first detected, this message is not
actually printed. The record is simply marked as damaged. It is only
thereafter when the record is visited that this message will appear.
So I would postulate that unless a full validation is done at some point,
you would not see this error message; once the full validation is done,
the message will be returned even if you do not specify -full.

B. Damaged Blobs

Blob records marked as damaged cannot be opened and will not be deleted
from disk. This means that even during backup the blob structures marked
as damaged will not be fetched and backed up. (Why this is done
differently for blobs than for records I cannot say.
Perhaps it was viewed as too difficult to try to retrieve a damaged
blob.)

#endif /* INTERNAL_DOCUMENTATION

Interbase-BR - Copyright (c) 2000 by Carlos H. Cantu - Voltar para a página principal

<http://www.warmboot.com.br/ib/index.html>

